Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory

نویسندگان

  • FRIGYES PODMANICZKY
  • GYULA I. TÓTH
چکیده

Crystallization of supersaturated liquids usually starts by epitaxial growth or by heterogeneous nucleation on foreign surfaces. Herein, we review recent advances made in modeling heteroepitaxy and heterogeneous nucleation on flat/modulated surfaces and nanoparticles within the framework of a simple dynamical density functional theory, known as the phase-field crystal model. It will be shown that the contact angle and the nucleation barrier are nonmonotonous functions of the lattice mismatch between the substrate and the crystalline phase. In continuous cooling studies for substrates with lattice mismatch, we recover qualitatively the Matthews–Blakeslee mechanism of stress release via the misfit dislocations. The simulations performed for particle-induced freezing will be confronted with recent analytical results, exploring thus the validity range of the latter. It will be demonstrated that time-dependent studies are essential, as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classical density functional theory: an ideal tool to study heterogeneous crystal nucleation.

Density functional theory provides an ideal microscopic theory to address freezing and crystallization problems. We review the application of static density functional theory for the calculation of equilibrium phase diagrams. We also describe the dynamical extension of density functional theory for systems governed by overdamped Brownian dynamics. Applications of density functional theory to cr...

متن کامل

Dynamical density functional theory of gas-liquid nucleation

We present a consistent dynamical nucleation theory based on density functional theory. By considering the properties of stable droplets in closed volumes, the height and shape of the barrier to nucleation are calculated. Contributions from fluctuations in the center of mass of the nucleating cluster are taken into account. Forward and backward rates for cluster dynamics are obtained, and nucle...

متن کامل

Nucleation on a solid substrate: A density functional approach

We extend the density functional approach to the statistical mechanics of inhomogeneous fluids to calculate the rate of heterogeneous nucleation of the gas-to-liquid transition by a planar solid substrate. Comparison with classical nucleation theory ~extended to incorporate the line tension that results from three-phase contact! reveals the inadequacy of the latter approaches as the spinodal is...

متن کامل

Study of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory

Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...

متن کامل

Island nucleation in thin-film epitaxy: A first-principles investigation

We describe a theoretical study of the role of adsorbate interactions in island nucleation and growth, using Ag/Pt(111) heteroepitaxy as an example. From density-functional theory, we obtain the substrate-mediated Ag adatom pair interaction and we find that, past the short range, a repulsive ring is formed about the adatoms. The magnitude of the repulsion is comparable to the diffusion barrier....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015